If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2=12+40n
We move all terms to the left:
7n^2-(12+40n)=0
We add all the numbers together, and all the variables
7n^2-(40n+12)=0
We get rid of parentheses
7n^2-40n-12=0
a = 7; b = -40; c = -12;
Δ = b2-4ac
Δ = -402-4·7·(-12)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-44}{2*7}=\frac{-4}{14} =-2/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+44}{2*7}=\frac{84}{14} =6 $
| 12x-5=7x | | -12=-x-7x-4 | | (7x-2)+(4x-16)=180 | | 136=5x+6x+4 | | 15s+7=7 | | 0,11v=3.19 | | 3+d=-2 | | g7-2=3 | | 5x+4-2x=1 | | 2–4x=6x | | –6−4k=–6k+8 | | –2q2+8q−8=0 | | 2(3t+5)-4(2+-1)=6 | | 1/3(x15)=7 | | 7r^2=168 | | k4−7=−5 | | 6x−33/2=2/3x+7 | | 14.95-d=7.55 | | m+95=2 | | -k=19.5 | | d-14.95=7.55 | | 12=2/7x | | 12+6-6+x=3x+6 | | (4a)+2a+40=180 | | 4a+2a+40=180 | | 75=9(-8-4n)+36n | | (32/3)^x=100 | | 3x+20=4x–25 | | b+1=-7 | | 102/3^x=100 | | 3.8=2b | | 6.6+100=43.56+10x |